Compare different DEMs for individual glaciers: RGI-TOPO for RGI v6.0#

For most glaciers in the world there are several digital elevation models (DEM) which cover the respective glacier. In OGGM we have currently implemented more than 10 different open access DEMs to choose from. Some are regional and only available in certain areas (e.g. Greenland or Antarctica) and some cover almost the entire globe.

This notebook allows to see which of the DEMs are available for a selected glacier and how they compare to each other. That way it is easy to spot systematic differences and also invalid points in the DEMs.

Input parameters#

This notebook can be run as a script with parameters using papermill, but it is not necessary. The following cell contains the parameters you can choose from:

# The RGI Id of the glaciers you want to look for
# Use the original shapefiles or the GLIMS viewer to check for the ID: https://www.glims.org/maps/glims
rgi_id = 'RGI60-11.00897'

# The default is to test for all sources available for this glacier
# Set to a list of source names to override this
sources = None
# Where to write the plots. Default is in the current working directory
plot_dir = f'outputs/{rgi_id}'
# The RGI version to use
# V62 is an unofficial modification of V6 with only minor, backwards compatible modifications
prepro_rgi_version = 62
# Size of the map around the glacier. Currently only 10 and 40 are available
prepro_border = 10
# Degree of processing level.  Currently only 1 is available.
from_prepro_level = 1

Check input and set up#

# The sources can be given as parameters
if sources is not None and isinstance(sources, str):
    sources = sources.split(',')
# Plotting directory as well
if not plot_dir:
    plot_dir = './' + rgi_id
import os
plot_dir = os.path.abspath(plot_dir)
import pandas as pd
import numpy as np
from oggm import cfg, utils, workflow, tasks, graphics, GlacierDirectory
import xarray as xr
import rioxarray as rioxr
import geopandas as gpd
import salem
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import AxesGrid
import itertools

from oggm.utils import DEM_SOURCES
from oggm.workflow import init_glacier_directories
# Make sure the plot directory exists
utils.mkdir(plot_dir);
# Use OGGM to download the data
cfg.initialize()
cfg.PATHS['working_dir'] = utils.gettempdir(dirname='OGGM-DEMS', reset=True)
cfg.PARAMS['use_intersects'] = False
2024-04-25 13:51:46: oggm.cfg: Reading default parameters from the OGGM `params.cfg` configuration file.
2024-04-25 13:51:46: oggm.cfg: Multiprocessing switched OFF according to the parameter file.
2024-04-25 13:51:46: oggm.cfg: Multiprocessing: using all available processors (N=4)
2024-04-25 13:51:47: oggm.cfg: PARAMS['use_intersects'] changed from `True` to `False`.

Download the data using OGGM utility functions#

Note that you could reach the same goal by downloading the data manually from https://cluster.klima.uni-bremen.de/data/gdirs/dems_v2/default (high resolution version: https://cluster.klima.uni-bremen.de/data/gdirs/dems_v1/highres)

# URL of the preprocessed GDirs
gdir_url = 'https://cluster.klima.uni-bremen.de/data/gdirs/dems_v2/default'
# We use OGGM to download the data
gdir = init_glacier_directories([rgi_id], from_prepro_level=1, prepro_border=10, prepro_base_url=gdir_url)[0]
2024-04-25 13:51:48: oggm.workflow: init_glacier_directories from prepro level 1 on 1 glaciers.
2024-04-25 13:51:48: oggm.workflow: Execute entity tasks [gdir_from_prepro] on 1 glaciers

Read the DEMs and store them all in a dataset#

if sources is None:
    sources = [src for src in os.listdir(gdir.dir) if src in utils.DEM_SOURCES]
print('RGI ID:', rgi_id)
print('Available DEM sources:', sources)
print('Plotting directory:', plot_dir)
RGI ID: RGI60-11.00897
Available DEM sources: ['SRTM', 'MAPZEN', 'AW3D30', 'COPDEM90', 'COPDEM30', 'ASTER', 'DEM3', 'TANDEM', 'NASADEM']
Plotting directory: /__w/tutorials/tutorials/notebooks/tutorials/outputs/RGI60-11.00897
# We use xarray to store the data
ods = xr.Dataset()
for src in sources:
    demfile = os.path.join(gdir.dir, src) + '/dem.tif'
    with rioxr.open_rasterio(demfile) as ds:
        data = ds.sel(band=1).load() * 1.
        ods[src] = data.where(data > -100, np.NaN)
    
    sy, sx = np.gradient(ods[src], gdir.grid.dx, gdir.grid.dx)
    ods[src + '_slope'] = ('y', 'x'),  np.arctan(np.sqrt(sy**2 + sx**2))

with rioxr.open_rasterio(gdir.get_filepath('glacier_mask')) as ds:
    ods['mask'] = ds.sel(band=1).load()
# Decide on the number of plots and figure size
ns = len(sources)
x_size = 12
n_cols = 3
n_rows = -(-ns // n_cols)
y_size = x_size / n_cols * n_rows

Raw topography data#

smap = salem.graphics.Map(gdir.grid, countries=False)
smap.set_shapefile(gdir.read_shapefile('outlines'))
smap.set_plot_params(cmap='topo')
smap.set_lonlat_contours(add_tick_labels=False)
smap.set_plot_params(vmin=np.nanquantile([ods[s].min() for s in sources], 0.25),
                     vmax=np.nanquantile([ods[s].max() for s in sources], 0.75))

fig = plt.figure(figsize=(x_size, y_size))
grid = AxesGrid(fig, 111,
                nrows_ncols=(n_rows, n_cols),
                axes_pad=0.7,
                cbar_mode='each',
                cbar_location='right',
                cbar_pad=0.1
                )

for i, s in enumerate(sources):
    data = ods[s]
    smap.set_data(data)
    ax = grid[i]
    smap.visualize(ax=ax, addcbar=False, title=s)
    if np.isnan(data).all():
        grid[i].cax.remove()
        continue
    cax = grid.cbar_axes[i]
    smap.colorbarbase(cax)
    
# take care of uneven grids
if ax != grid[-1] and not grid[-1].title.get_text():
    grid[-1].remove()
    grid[-1].cax.remove()
if ax != grid[-2] and not grid[-2].title.get_text():
    grid[-2].remove()
    grid[-2].cax.remove()

plt.savefig(os.path.join(plot_dir, 'dem_topo_color.png'), dpi=150, bbox_inches='tight')
../../_images/db366b6fd9ea51b8682a3fa7df8545292f3d4e328c957fbaa1029953d83a565c.png

Shaded relief#

fig = plt.figure(figsize=(x_size, y_size))
grid = AxesGrid(fig, 111,
                nrows_ncols=(n_rows, n_cols),
                axes_pad=0.7,
                cbar_location='right',
                cbar_pad=0.1
                )
smap.set_plot_params(cmap='Blues')
smap.set_shapefile()
for i, s in enumerate(sources):
    data = ods[s].copy().where(np.isfinite(ods[s]), 0)
    smap.set_data(data * 0)
    ax = grid[i]
    smap.set_topography(data)
    smap.visualize(ax=ax, addcbar=False, title=s)
    
# take care of uneven grids
if ax != grid[-1] and not grid[-1].title.get_text():
    grid[-1].remove()
    grid[-1].cax.remove()
if ax != grid[-2] and not grid[-2].title.get_text():
    grid[-2].remove()
    grid[-2].cax.remove()

plt.savefig(os.path.join(plot_dir, 'dem_topo_shade.png'), dpi=150, bbox_inches='tight')
../../_images/b16797926e82bfaa90d49d260b9650d340309ab9d4ef10950a4fc13c92d77022.png

Slope#

fig = plt.figure(figsize=(x_size, y_size))
grid = AxesGrid(fig, 111,
                nrows_ncols=(n_rows, n_cols),
                axes_pad=0.7,
                cbar_mode='each',
                cbar_location='right',
                cbar_pad=0.1
                )

smap.set_topography();
smap.set_plot_params(vmin=0, vmax=0.7, cmap='Blues')

for i, s in enumerate(sources):
    data = ods[s + '_slope']
    smap.set_data(data)
    ax = grid[i]
    smap.visualize(ax=ax, addcbar=False, title=s + ' (slope)')
    cax = grid.cbar_axes[i]
    smap.colorbarbase(cax)
    
# take care of uneven grids
if ax != grid[-1] and not grid[-1].title.get_text():
    grid[-1].remove()
    grid[-1].cax.remove()
if ax != grid[-2] and not grid[-2].title.get_text():
    grid[-2].remove()
    grid[-2].cax.remove()

plt.savefig(os.path.join(plot_dir, 'dem_slope.png'), dpi=150, bbox_inches='tight')
../../_images/e5efa93866827185781cbbd6ef34b6a36cce18b9791c255ba80519d5bce714db.png

Some simple statistics about the DEMs#

df = pd.DataFrame()
for s in sources:
    df[s] = ods[s].data.flatten()[ods.mask.data.flatten() == 1]

dfs = pd.DataFrame()
for s in sources:
    dfs[s] = ods[s + '_slope'].data.flatten()[ods.mask.data.flatten() == 1]
df.describe()
SRTM MAPZEN AW3D30 COPDEM90 COPDEM30 ASTER DEM3 TANDEM NASADEM
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean 3032.272219 3023.202610 3023.871970 3014.512695 3014.124512 3031.316346 3052.045681 3066.820068 3028.332505
std 246.447678 254.144292 253.597569 259.186768 259.403259 250.883864 237.228101 258.874115 247.615467
min 2450.000000 2413.000000 2417.000000 2416.773438 2413.545654 2428.000000 2490.000000 2469.287598 2430.000000
25% 2857.000000 2850.000000 2851.000000 2836.975037 2837.251770 2865.000000 2883.500000 2889.410828 2855.000000
50% 3060.000000 3051.000000 3052.500000 3044.824097 3044.196289 3058.000000 3068.500000 3097.242310 3054.000000
75% 3203.000000 3201.750000 3201.750000 3196.834839 3196.260803 3203.000000 3217.000000 3249.972717 3202.000000
max 3684.000000 3723.000000 3720.000000 3688.330078 3694.253174 3693.000000 3701.000000 3738.977051 3691.000000

Comparison matrix plot#

# Table of differences between DEMS
df_diff = pd.DataFrame()
done = []
for s1, s2 in itertools.product(sources, sources):
    if s1 == s2:
        continue
    if (s2, s1) in done:
        continue
    df_diff[s1 + '-' + s2] = df[s1] - df[s2]
    done.append((s1, s2))
# Decide on plot levels
max_diff = df_diff.quantile(0.99).max()
base_levels = np.array([-8, -5, -3, -1.5, -1, -0.5, -0.2, -0.1, 0, 0.1, 0.2, 0.5, 1, 1.5, 3, 5, 8])
if max_diff < 10:
    levels = base_levels
elif max_diff < 100:
    levels = base_levels * 10
elif max_diff < 1000:
    levels = base_levels * 100
else:
    levels = base_levels * 1000
levels = [l for l in levels if abs(l) < max_diff]
if max_diff > 10:
    levels = [int(l) for l in levels]
levels
[-50, -30, -15, -10, -5, -2, -1, 0, 1, 2, 5, 10, 15, 30, 50]
smap.set_plot_params(levels=levels, cmap='PuOr', extend='both')
smap.set_shapefile(gdir.read_shapefile('outlines'))

fig = plt.figure(figsize=(14, 14))
grid = AxesGrid(fig, 111,
                nrows_ncols=(ns - 1, ns - 1),
                axes_pad=0.3,
                cbar_mode='single',
                cbar_location='right',
                cbar_pad=0.1
                )
done = []
for ax in grid:
    ax.set_axis_off()
for s1, s2 in itertools.product(sources, sources):
    if s1 == s2:
        continue
    if (s2, s1) in done:
        continue
    data = ods[s1] - ods[s2]
    ax = grid[sources.index(s1) * (ns - 1) + sources[1:].index(s2)]
    ax.set_axis_on()
    smap.set_data(data)
    smap.visualize(ax=ax, addcbar=False)
    done.append((s1, s2))
    ax.set_title(s1 + '-' + s2, fontsize=8)
    
cax = grid.cbar_axes[0]
smap.colorbarbase(cax);

plt.savefig(os.path.join(plot_dir, 'dem_diffs.png'), dpi=150, bbox_inches='tight')
../../_images/88cefdac6ecfe85877f21fcd34711d0516c48eb13858ffbea337eafeb31b34f6.png

Comparison scatter plot#

import seaborn as sns
sns.set(style="ticks")

l1, l2 = (utils.nicenumber(df.min().min(), binsize=50, lower=True), 
          utils.nicenumber(df.max().max(), binsize=50, lower=False))

def plot_unity(xdata, ydata, **kwargs):
    points = np.linspace(l1, l2, 100)
    plt.gca().plot(points, points, color='k', marker=None,
                   linestyle=':', linewidth=3.0)

g = sns.pairplot(df.dropna(how='all', axis=1).dropna(), plot_kws=dict(s=50, edgecolor="C0", linewidth=1));
g.map_offdiag(plot_unity)
for asx in g.axes:
    for ax in asx:
        ax.set_xlim((l1, l2))
        ax.set_ylim((l1, l2))

plt.savefig(os.path.join(plot_dir, 'dem_scatter.png'), dpi=150, bbox_inches='tight')
../../_images/38d1e3a3c48db505a542508b1bfbbd245e1048d2c5c0afa69fc75054f40a9bca.png

Table statistics#

df.describe()
SRTM MAPZEN AW3D30 COPDEM90 COPDEM30 ASTER DEM3 TANDEM NASADEM
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean 3032.272219 3023.202610 3023.871970 3014.512695 3014.124512 3031.316346 3052.045681 3066.820068 3028.332505
std 246.447678 254.144292 253.597569 259.186768 259.403259 250.883864 237.228101 258.874115 247.615467
min 2450.000000 2413.000000 2417.000000 2416.773438 2413.545654 2428.000000 2490.000000 2469.287598 2430.000000
25% 2857.000000 2850.000000 2851.000000 2836.975037 2837.251770 2865.000000 2883.500000 2889.410828 2855.000000
50% 3060.000000 3051.000000 3052.500000 3044.824097 3044.196289 3058.000000 3068.500000 3097.242310 3054.000000
75% 3203.000000 3201.750000 3201.750000 3196.834839 3196.260803 3203.000000 3217.000000 3249.972717 3202.000000
max 3684.000000 3723.000000 3720.000000 3688.330078 3694.253174 3693.000000 3701.000000 3738.977051 3691.000000
df.corr()
SRTM MAPZEN AW3D30 COPDEM90 COPDEM30 ASTER DEM3 TANDEM NASADEM
SRTM 1.000000 0.998217 0.998216 0.998394 0.998275 0.998518 0.997864 0.998315 0.998544
MAPZEN 0.998217 1.000000 0.999819 0.999700 0.999754 0.999455 0.998774 0.999687 0.999643
AW3D30 0.998216 0.999819 1.000000 0.999660 0.999679 0.999315 0.998638 0.999633 0.999553
COPDEM90 0.998394 0.999700 0.999660 1.000000 0.999958 0.999365 0.998282 0.999974 0.999379
COPDEM30 0.998275 0.999754 0.999679 0.999958 1.000000 0.999343 0.998258 0.999932 0.999358
ASTER 0.998518 0.999455 0.999315 0.999365 0.999343 1.000000 0.998119 0.999344 0.999131
DEM3 0.997864 0.998774 0.998638 0.998282 0.998258 0.998119 1.000000 0.998220 0.999294
TANDEM 0.998315 0.999687 0.999633 0.999974 0.999932 0.999344 0.998220 1.000000 0.999342
NASADEM 0.998544 0.999643 0.999553 0.999379 0.999358 0.999131 0.999294 0.999342 1.000000
df_diff.describe()
SRTM-MAPZEN SRTM-AW3D30 SRTM-COPDEM90 SRTM-COPDEM30 SRTM-ASTER SRTM-DEM3 SRTM-TANDEM SRTM-NASADEM MAPZEN-AW3D30 MAPZEN-COPDEM90 ... COPDEM30-ASTER COPDEM30-DEM3 COPDEM30-TANDEM COPDEM30-NASADEM ASTER-DEM3 ASTER-TANDEM ASTER-NASADEM DEM3-TANDEM DEM3-NASADEM TANDEM-NASADEM
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 ... 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean 9.069608 8.400249 17.759413 18.147733 0.955873 -19.773462 -34.547661 3.939714 -0.669360 8.689804 ... -17.191860 -37.921195 -52.695396 -14.208019 -20.729335 -35.503534 2.983841 -14.774199 23.713176 38.487375
std 16.809936 16.555147 19.169901 19.706512 14.247553 18.297883 19.220421 13.380009 4.859039 8.057372 ... 12.572292 26.573851 3.063715 14.878318 20.258841 12.211383 10.892745 26.213201 13.812505 14.527865
min -69.000000 -75.000000 -53.235596 -55.908691 -59.000000 -74.000000 -106.757324 -59.000000 -35.000000 -32.682129 ... -52.308594 -130.334717 -82.028564 -71.462646 -105.000000 -79.663330 -40.000000 -63.065674 -13.000000 -16.636475
25% 1.000000 -1.000000 6.643860 6.655701 -7.000000 -32.000000 -45.801941 -1.000000 -3.000000 4.038086 ... -24.869507 -49.488220 -53.654480 -19.370178 -27.000000 -43.959106 -3.000000 -32.586426 14.000000 33.745605
50% 10.000000 9.000000 17.123169 17.336670 0.000000 -21.000000 -35.271484 4.000000 -1.000000 7.221680 ... -15.391968 -29.365234 -52.562256 -10.123413 -18.000000 -37.429810 4.000000 -23.847168 21.000000 42.692627
75% 20.750000 20.000000 29.375549 30.145203 10.000000 -9.000000 -22.963257 10.000000 1.000000 11.912292 ... -8.794128 -19.947693 -51.849060 -4.427490 -10.000000 -28.404724 9.000000 -2.716553 31.000000 48.055481
max 84.000000 79.000000 73.730957 79.334717 69.000000 54.000000 21.226807 69.000000 28.000000 44.972168 ... 23.341553 11.646729 -23.009766 27.088867 42.000000 0.389160 55.000000 72.397461 85.000000 80.386475

8 rows × 36 columns

df_diff.abs().describe()
SRTM-MAPZEN SRTM-AW3D30 SRTM-COPDEM90 SRTM-COPDEM30 SRTM-ASTER SRTM-DEM3 SRTM-TANDEM SRTM-NASADEM MAPZEN-AW3D30 MAPZEN-COPDEM90 ... COPDEM30-ASTER COPDEM30-DEM3 COPDEM30-TANDEM COPDEM30-NASADEM ASTER-DEM3 ASTER-TANDEM ASTER-NASADEM DEM3-TANDEM DEM3-NASADEM TANDEM-NASADEM
count 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 ... 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000 3218.000000
mean 15.292107 14.691734 21.517830 22.048134 10.924798 22.972343 35.206708 10.136109 3.354257 9.364936 ... 17.918605 37.997709 52.695396 14.978851 22.658484 35.503776 8.758856 26.697562 23.853014 38.762453
std 11.442731 11.346579 14.826293 15.215713 9.193391 14.072358 17.984406 9.580093 3.578254 7.261413 ... 11.512526 26.464294 3.063715 14.101744 18.074653 12.210679 7.128573 13.874268 13.569511 13.776885
min 0.000000 0.000000 0.012451 0.003906 0.000000 0.000000 0.166016 0.000000 0.000000 0.000488 ... 0.000732 0.135986 23.009766 0.002197 0.000000 0.389160 0.000000 0.003906 0.000000 0.005859
25% 6.000000 5.000000 10.496765 10.525879 4.000000 12.000000 22.963257 3.000000 1.000000 4.394409 ... 9.204651 19.947693 51.849060 5.027039 11.000000 28.404724 3.000000 16.986389 14.000000 33.745605
50% 13.000000 13.000000 18.754150 19.279541 9.000000 22.000000 35.271484 7.000000 2.000000 7.369751 ... 15.604980 29.365234 52.562256 10.341919 19.000000 37.429810 7.000000 28.024414 21.000000 42.692627
75% 23.000000 22.000000 29.730896 30.630066 16.000000 32.000000 45.801941 15.000000 4.000000 12.140320 ... 24.869507 49.488220 53.654480 19.433960 27.000000 43.959106 12.000000 35.479187 31.000000 48.055481
max 84.000000 79.000000 73.730957 79.334717 69.000000 74.000000 106.757324 69.000000 35.000000 44.972168 ... 52.308594 130.334717 82.028564 71.462646 105.000000 79.663330 55.000000 72.397461 85.000000 80.386475

8 rows × 36 columns

What’s next?#