We are not aware of all of them! Click here if you’d like to add your own.
Preprints / In review
Caro, A., Condom, T., Rabatel, A., Aguayo, R., and Champollion, N.: Glacio-hydrological changes along the Andes throughout the 21st Century, Research Square [preprint], doi:10.21203/rs.3.rs-4714636/v1, 2024.
Hartl, L., Schmitt, P., Schuster, L., Helfricht, K., Abermann, J., and Maussion, F.: Recent observations and glacier modeling point towards near complete glacier loss in western Austria (Ötztal and Stubai mountain range) if 1.5 °C is not met, EGUsphere [preprint], doi:10.5194/egusphere-2024-3146, 2024.
Kanzow, T., Humbert, A., Mölg, T., Scheinert, M., Braun, M., Burchard, H., Doglioni, F., Hochreuther, P., Horwath, M., Huhn, O., Kusche, J., Loebel, E., Lutz, K., Marzeion, B., McPherson, R., Mohammadi-Aragh, M., Möller, M., Pickler, C., Reinert, M., Rhein, M., Rückamp, M., Schaffer, J., Shafeeque, M., Stolzenberger, S., Timmermann, R., Turton, J., Wekerle, C., and Zeising, O.: The atmosphere-land/ice-ocean system in the region near the 79N Glacier in Northeast Greenland: Synthesis and key findings from GROCE, EGUsphere [preprint], doi:10.5194/egusphere-2024-757, 2024.
van der Laan, L., Vlug, A., Scaife, A. A., Maussion, F., and Förster, K.: Decadal re-forecasts of glacier climatic mass balance, EGUsphere [preprint], doi:10.5194/egusphere-2024-387, 2024.
Luo, Y., Afzal, M.M., and Wang, X.: Large Glaciers Sustaining the Upper Indus Basin Glacier Runoff in the Future, SSRN [preprint], doi:10.2139/ssrn.4936600, 2024.
Mackay, J. D., Barrand, N. E., Hannah, D. M., Potter, E., Montoya, N., and Buytaert, W.: Physically-based modelling of glacier evolution under climate change in the tropical Andes, EGUsphere [preprint], doi:10.5194/egusphere-2024-863, 2024.
Malles, J.-H., Marzeion, B., and Myers, P. G.: Freshwater input from glacier melt outside Greenland alters modeled northern high-latitude ocean circulation, EGUsphere [preprint], doi:10.5194/egusphere-2024-1425, 2024.
Schuster, L., Maussion, F., Rounce, D., Ultee, L., Schmitt, P., Lacroix, F., Frölicher, T., Schleussner, C.F.: Irreversible glacier change and trough water for centuries after overshooting 1.5°C, Research Square [preprint], doi:/10.21203/rs.3.rs-5045894/v1, 2024.
Shafeeque, M., Malles, J.-H., Vlug, A., Möller, M., and Marzeion, B.: Projecting the Response of Greenland’s Peripheral Glaciers to Future Climate Change: Glacier Losses, Sea Level Impact, Freshwater Contributions, and Peak Water Timing, EGUsphere [preprint], doi:10.5194/egusphere-2024-2184, 2024.
Vergnano, A., Franco, D., and Godio, A.: Ground penetrating radar on Rutor temperate glacier supported by ice-thickness modeling algorithms for bedrock detection, EGUsphere [preprint], doi:10.5194/egusphere-2024-2569, 2024.
Wimberly, F., Ultee, L., Schuster, L., Huss, M., Rounce, D. R., Maussion, F., Coats, S., Mackay, J., and Holmgren, E.: Inter-model differences in 21st Century Glacier Runoff for the World’s Major River Basins, EGUsphere [preprint], doi:10.5194/egusphere-2024-1778, 2024.
Zekollari, H., Schuster, L., Maussion, F., Hock, R., Marzeion, B., Rounce, D., Compagno, L., Fujita, K., Huss, M., James, M., Kraaijenbrink, P., Lipscomb, W., Minallah, S., Oberrauch, M., van Tricht, L., Champollion, N., Edwards, T., Farinotti, D., Immerzeel, W., Leguy, G., Sakai, A.: Glacier preservation doubled by limiting warming to 1.5°C, EarthArXiv [preprint], doi:10.31223/X51T5W, 2024.
2025
Pfleiderer, P., Frölicher, T.L., Kropf, C.M., Lamboll, R.D., Lejeune, Q., Lourenço, T.C., Maussion, F., McCaughey, J.W., Quilcaille, Y., Rogelj, J., Sanderson, B., Schuster, L., Sillmann, J., Smith, C., Theokritoff, E., and Schleussner, C-F.: Reversal of the impact chain for actionable climate information, Nature Geoscience, doi:10.1038/s41561-024-01597-w, 2025.
2024
Aguayo, R., Maussion, F., Schuster, L., Schaefer, M., Caro, A., Schmitt, P., Mackay, J., Ultee, L., Leon-Muñoz, J., and Aguayo, M.: Unravelling the sources of uncertainty in glacier runoff projections in the Patagonian Andes (40–56° S), The Cryosphere, 18, 5383-5406, doi:10.5194/tc-18-5383-2024, 2024.
Caro, A., Condom, T., Rabatel, A., Champollion, N., García, N., and Saavedra, F.: Hydrological response of Andean Catchments to recent glacier mass loss, The Cryosphere, 18, 2487–2507, doi:10.5194/tc-18-2487-2024, 2024.
Chen, X., Yang, W., Li, Y., Yang, Y., Liu, J., and Liu, Q.: Timing and extent of glacial fluctuations around Mt. Noijin Kangsang on the southern Tibetan Plateau during the Little Ice Age, Palaeogeogr. Palaeoclimatol. Palaeoecol., 640, 112092, doi:10.1016/j.palaeo.2024.112092, 2024.
Diaconu, C. -A., and Gottschling, N. M.: Uncertainty-Aware Learning with Label Noise for Glacier Mass Balance Modelling, IEEE Geoscience and Remote Sensing Letters, doi:10.1109/LGRS.2024.3356160, 2024.
Hanus, S., Burek, P., Smilovic, M., Seibert, J., and Viviroli, D.: Seasonal variability in the global relevance of mountains to satisfy lowland water demand, Environmental Research Letters, doi:10.1088/1748-9326/ad8507, 2024.
Hanus, S., Schuster, L., Burek, P., Maussion, F., Wada, Y., and Viviroli, D.: Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – Towards an improved representation of mountain water resources in global assessments, Geosci. Model Dev., 17, 5123–5144, doi:10.5194/gmd-17-5123-2024, 2024.
Hu, S., Zhou, T., and Wu, B.: Accelerated warming of High Mountain Asia predicted at multiple years ahead, Science Bulletin, doi:10.1016/j.scib.2024.09.023, 2024.
Kang, L., Ding, M., Wang, Y., Sun, W., Wang, L., An, H., Zhang, Q., Che, J., & Huai, B: Projections of Greenland periphery glaciers and ice caps’s change, Environmental Research Letters, doi:10.1088/1748-9326/ad8b5f, 2024.
van der Laan, L., Cholibois, K., El Menuawy, A., and Förster, K.: A scenario–neutral approach to climate change in glacier mass balance modeling, Annals of Glaciology, 1-14, doi:10.1017/aog.2024.22 , 2024.
Li, T., Heidler, K., Mou, L., Ignéczi, Á., Zhu, X. X., and Bamber, J. L.: A high-resolution calving front data product for marine-terminating glaciers in Svalbard, Earth System Science Data, 16, 2, 919-939, doi:10.5194/essd-16-919-2024, 2024.
Möller, M., Recinos, B., Rastner, P., and Marzeion, B.: Heterogeneous impacts of ocean thermal forcing on ice discharge from Greenland’s peripheral tidewater glaciers over 2000–2021, Scientific Reports, 14, 11316, doi:10.1038/s41598-024-61930-6, 2024.
Reinthaler, J., and Paul, F.: Assessment of methods for reconstructing Little Ice Age glacier surfaces on the examples of Novaya Zemlya and the Swiss Alps, Geomorphology, 461, 109321, doi:10.1038/10.1016/j.geomorph.2024.109321, 2024.
Tober, B.S., Christoffersen, M.S., Holt, J.W., Truffer, M., and Larsen, C.F.: Thickness of Ruth Glacier, Alaska, and depth of its Great Gorge from ice-penetrating radar and mass conservation, Journal of Glaciology, doi:10.1017/jog.2024.53 , 2024.
Wang L, Yang S, Chen K, Liu S, Jin X, and Xie Y.: A Long-Duration Glacier Change Analysis for the Urumqi River Valley, a Representative Region of Central Asia., Remote Sens., 16(9), 1489, doi:10.3390/rs16091489, 2024.
Xiao, L., Li, S., Wu, K., Liu, S., Zhu, Y., Afzal, M.M., Zhou, J., Yi, Y., Wei, J., Duan, Y., and Shen, Y.: Geodetic-Data-Calibrated Ice Flow Model to Simulate Historical and Future Response of Glaciers in Southeastern Tibetan Plateau, Remote Sens., 16, 522, doi:10.3390/rs16030522, 2024.
Yang, W., Chu, W., Li, Y., Peng, X., and Liu, G.: Late Quaternary paleoclimate reconstructions in Bhutanese Himalaya based on glacial modelling. Global and Planetary Change, 240, 104513. doi:10.1016/j.gloplacha.2024.104513, 2024.
Zekollari, H., Huss, M., Schuster, L., Maussion, F., Rounce, D. R., Aguayo, R., Champollion, N., Compagno, L., Hugonnet, R., Marzeion, B., Mojtabavi, S., and Farinotti, D.: Twenty-first century global glacier evolution under CMIP6 scenarios and the role of glacier-specific observations, The Cryosphere, 18, 5045–5066, doi:10.5194/tc-18-5045-2024, 2024.
Zhou, B., Zou, Q., Jiang, H., Yang, T., Zhou, W., Chen, S., and Yao, H.: A novel framework for predicting glacial lake outburst debris flows in the Himalayas amidst climate change. Science of the Total Environment, 946(June), 174435. doi:10.1016/j.scitotenv.2024.174435, 2024.
2023
Afzal, M. M., Wang, X., Sun, L., Jiang, T., Kong, Q., Luo, Y: Hydrological and dynamical response of glaciers to climate change based on their dimensions in the Hunza Basin, Karakoram, J. Hydrol., 617(PB), 128948, doi:10.1016/j.jhydrol.2022.128948, 2023.
Bolibar, J., Sapienza, F., Maussion, F., Lguensat, R., Wouters, B., and Pérez, F.: Universal Differential Equations for glacier ice flow modelling, Geosci. Model Dev., 16, 6671–6687, doi:10.5194/gmd-16-6671-2023, 2023.
Hock, R., Maussion, F., Marzeion, B. and Nowicki, S.: What is the global glacier ice volume outside the ice sheets?, J. Glaciol., 1–7, doi:10.1017/jog.2023.1, 2023.
Li, F., Maussion, F., Wu, G., Chen, W., Yu, Z., Li, Y. and Liu, G.: Influence of glacier inventories on ice thickness estimates and future glacier change projections in the Tian Shan range, Central Asia, J. Glaciol., 69(274), 266–280, doi:10.1017/jog.2022.60, 2023.
Malles, J., Maussion, F., Ultee, L., Kochtitzky, W., Copland, L. and Marzeion, B.: Exploring the impact of a frontal ablation parameterization on projected 21st-century mass change for Northern Hemisphere glaciers, J. Glaciol., 1–16, doi:10.1017/jog.2023.19, 2023.
O’Kane, T. J., Scaife, A. A., Kushnir, Y., Brookshaw, A., Buontempo, C., Carlin, D., Connell, R. K., Doblas-Reyes, F., Dunstone, N., Förster, K., Graça, A., Hobday, A. J., Kitsios, V., van der Laan, L., Lockwood, J., Merryfield, W. J., Paxian, A., Payne, M. R., Reader, M. C., Saville, G. R., Smith, D., Solaraju-Murali, B., Caltabiano, N., Carman, J., Hawkins, E., Keenlyside, N., Kumar, A., Matei, D., Pohlmann, H., Power, S., Raphael, M., Sparrow, M. and Wu, B.: Recent applications and potential of near-term (interannual to decadal) climate predictions, Frontiers in Climate, 5, doi:10.3389/fclim.2023.1121626, 2023.
Pesci, M. H., Schulte Overberg, P., Bosshard, T., and Förster, K.: From global glacier modeling to catchment hydrology: bridging the gap with the WaSiM-OGGM coupling scheme, Frontiers in Water, 5., doi:10.3389/frwa.2023.1296344, 2023.
Recinos, B., Maussion, F., Marzeion, B.: Advances in data availability to constrain and evaluate ice dynamical models of Greenland’s tidewater peripheral glaciers, Annals of Glaciol., 1–7, doi:10.1017/aog.2023.11, 2023.
Ross, A. C., Mendoza, M. M., Drenkhan, F., Montoya, N., Baiker, J. R., Mackay, J. D., Hannah, D. M., Buytaert, W.: Seasonal water storage and release dynamics of bofedal wetlands in the Central Andes, Hydrol. Process., 37(8), 1–14, doi:10.1002/hyp.14940, 2023.
Rounce, D. R., Hock, R., Maussion, F., Hugonnet, R., Kochtitzky, W., Huss, M., Berthier, E., Brinkerhoff, D., Compagno, L., Copland, L., Farinotti, D., Menounos, B. and McNabb, R. W.: Global glacier change in the 21st century: Every increase in temperature matters, Science (80-. )., 379(6627), 78–83, doi:10.1126/science.abo1324, 2023. [download from the authors website].
Schuster, L., Rounce, D., Maussion, F.: Glacier projections sensitivity to temperature-index model choices and calibration strategies, Annals of Glaciol., 1–16, doi:10.1017/aog.2023.57, 2023.
Tang, S., Vlug, A., Piao, S., Li, F., Wang, T., Krinner, G., Li, L. Z. X., Wang, X., Wu, G., Li, Y., Zhang, Y., Xu, H., and Yao, T.: Regional and tele-connected impacts of the Tibetan Plateau surface darkening., Nat. Commun., 14, 32, doi:10.1038/s41467-022-35672-w, 2023.
Yang, L., Zhao, G., Mu, X., Liu, Y., Tian, P., and Danzengbandian, P.: Historical and projected evolutions of glaciers in response to climate change in High Mountain Asia, Environ. Res., 237(2), 117037, doi:10.1016/j.envres.2023.117037, 2023.
Zhao, H., Su, B., Lei, H., Zhang, T., Xiao, C.: A new projection for glacier mass and runoff changes over High Mountain Asia, Science Bulletin, 68(1), 43-47, doi:10.1016/j.scib.2022.12.004, 2023.
2022
Bouchayer, C., Aiken, J. M., Thøgersen, K., Renard, F. and Schuler, T. V.: A machine learning framework to automate the classification of surge‐type glaciers in Svalbard, J. Geophys. Res. Earth Surf., doi:10.1029/2022JF006597, 2022.
Chen, W., Yao, T., Zhang, G., Li, F., Zheng, G., Zhou, Y., and Xu, F.: Towards ice-thickness inversion: an evaluation of global digital elevation models (DEMs) in the glacierized Tibetan Plateau, The Cryosphere, 16, 197–218, doi:10.5194/tc-16-197-2022, 2022.
Furian, W., Maussion, F., and Schneider, C.: Projected 21st-Century Glacial Lake Evolution in High Mountain Asia, Front. Earth Sci., 10, doi:10.3389/feart.2022.821798, 2022.
Nidheesh, G., Goosse, H., Parkes, D., Goelzer, H., Maussion, F., and Marzeion, B.: Process-based Estimate of Global-mean Sea-level Changes in the Common Era, Earth Syst. Dynam., 13, 1417–1435, doi:10.5194/esd-13-1417-2022, 2022.
Yang, M., Li, Z., Anjum, M. N., Kayastha, R., Kayastha, R. B., Rai, M., Zhang, X., and Xu, C.: Projection of streamflow changes under CMIP6 scenarios in the Urumqi river head watershed, Tianshan Mountain, China, Front. Earth Sci., 10, 1-14, doi:10.3389/feart.2022.857854, 2022.
Yang, W., Chu W., and Liu, G.: Importance of the seasonal temperature and precipitation variation on glacial evolutions during the LGM at monsoonal Himalaya based on Cogarbu valley, Palaeogeogr. Palaeoclimatol. Palaeoecol., 601, 111132, doi:10.1016/j.palaeo.2022.111132, 2022.
Yang, W., Li, Y., Lui, G., and Chu, W.: Timing and climatic-driven mechanisms of glacier advances in Bhutanese Himalaya during the Little Ice Age, The Cryosphere, 16, 3739–3752, doi:10.5194/tc-16-3739-2022, 2022.
2021
Dixit, A., Sahany, S. and Kulkarni, A. V.: Glacial changes over the Himalayan Beas basin under global warming, J. Environ. Manage., 295(May), 113101, doi:10.1016/j.jenvman.2021.113101, 2021.
Edwards, T. et al.: Projected land ice contributions to twenty-first-century sea level rise, Nature, 593(7857), 74–82, doi:10.1038/s41586-021-03302-y, 2021.
Eis, J., van der Laan, L., Maussion, F. and Marzeion, B.: Reconstruction of Past Glacier Changes with an Ice-Flow Glacier Model: Proof of Concept and Validation, Front. Earth Sci., 9(March), 1–16, doi:10.3389/feart.2021.595755, 2021.
Hartl, L., Helfricht, K., Stocker-Waldhuber, M., Seiser, B., & Fischer, A.: Classifying disequilibrium of small mountain glaciers from patterns of surface elevation change distributions, Journal of Glaciology, 1-16, doi:10.1017/jog.2021.90, 2021.
Pronk, J. B., Bolch, T., King, O., Wouters, B., and Benn, D. I.: Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region, The Cryosphere, doi:10.5194/tc-15-5577-2021, 2021.
Recinos, B., Maussion, F., Noël, B., Möller, M., Marzeion, B.: Calibration of a frontal ablation parameterization applied to Greenland’s peripheral calving glaciers, J. Glaciol., 1–13, doi:10.1017/jog.2021.63, 2021.
Rounce, D. R., Hock, R., McNabb, R. W., Millan, R., Sommer, C., Braun, M. H., Malz, P., Maussion, F., Mouginot, J., Seehaus, T. C. and Shean, D. E.: Distributed global debris thickness estimates reveal debris significantly impacts glacier mass balance, Geophys. Res. Lett., doi:10.1029/2020GL091311, 2021.
Shafeeque, M. and Luo, Y.: A multi-perspective approach for selecting CMIP6 scenarios to project climate change impacts on glacio-hydrology with a case study in Upper Indus river basin, J. Hydrol., 599, 126466, doi:10.1016/j.jhydrol.2021.126466, 2021.
2020
Khadka, M., Kayastha, R. B. and Kayastha, R.: Future projection of cryospheric and hydrologic regimes in Koshi River basin, Central Himalaya, using coupled glacier dynamics and glacio-hydrological models, J. Glaciol., 1–15, doi:10.1017/jog.2020.51, 2020.
Marzeion, B., Hock, R., Anderson, B., Bliss, A., Champollion, N., Fujita, K., Huss, M., Immerzeel, W., Kraaijenbrink, P., Malles, J., Maussion, F., Radić, V., Rounce, D. R., Sakai, A., Shannon, S., Wal, R. and Zekollari, H.: Partitioning the Uncertainty of Ensemble Projections of Global Glacier Mass Change, Earth’s Futur., 8(7), doi:10.1029/2019ef001470, 2020.
Parkes, D. and Goosse, H.: Modelling regional glacier length changes over the last millennium using the Open Global Glacier Model, The Cryosphere, 14, 3135–3153, doi:10.5194/tc-14-3135-2020, 2020.
Pelto, B. M., Maussion, F., Menounos, B., Radić, V. and Zeuner, M.: Bias-corrected estimates of glacier thickness in the Columbia River Basin, Canada, J. Glaciol., 1–13, doi:10.1017/jog.2020.75, 2020.
2019
Eis, J., Maussion, F., and Marzeion, B.: Initialization of a global glacier model based on present-day glacier geometry and past climate information: an ensemble approach, The Cryosphere, 13, 3317–3335, doi:10.5194/tc-13-3317-2019, 2019.
Farinotti, D., Huss, M., Fürst, J. J., Landmann, J., Machguth, H., Maussion, F., & Pandit, A.: A consensus estimate for the ice thickness distribution of all glaciers on Earth, Nature Geoscience, 1., doi:10.1038/s41561-019-0300-3, 2019.
Maussion, F., Butenko, A., Champollion, N., Dusch, M., Eis, J., Fourteau, K., Gregor, P., Jarosch, A. H., Landmann, J., Oesterle, F., Recinos, B., Rothenpieler, T., Vlug, A., Wild, C. T., and Marzeion, B.: The Open Global Glacier Model (OGGM) v1.1, Geosci. Model Dev., 12, 909-931, doi:10.5194/gmd-12-909-2019, 2019.
Recinos, B., Maussion, F., Rothenpieler, T., and Marzeion, B.: Impact of frontal ablation on the ice thickness estimation of marine-terminating glaciers in Alaska, The Cryosphere, 13, 2657–2672, doi:10.5194/tc-13-2657-2019, 2019.
2018
Goosse, H., Barriat, P.-Y., Dalaiden, Q., Klein, F., Marzeion, B., Maussion, F., Pelucchi, P., and Vlug, A.: Testing the consistency between changes in simulated climate and Alpine glacier length over the past millennium, Clim. Past, 14, 1119-1133, doi:10.5194/cp-14-1119-2018, 2018.
2017
Farinotti, D. et al.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949-970, doi:10.5194/tc-11-949-2017, 2017.
Related publications (selection)
Marzeion, B., Kaser, G., Maussion, F., and Champollion, N.: Limited influence of climate change mitigation on short-term glacier mass loss, Nature Climate Change, doi:10.1038/s41558-018-0093-1, 2018.
Marzeion, B., Cogley, J.G., Richter, K., and Parkes, D.: Attribution of global glacier mass loss to anthropogenic and natural causes, Science, 345, 919-921, doi:10.1126/science.1254702, 2014.
Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change from the surface mass balance of glaciers, The Cryosphere, 6, 1295-1322, doi:10.5194/tc-6-1295-2012, 2012.
Theses making use of OGGM
(that we are aware of)
PhD
Eis, J., Reconstructing glacier evolution using a flowline model, doi:10.26092/elib/432, 2020.
van der Laan, L., Near-Term Global Glacier Mass Balance Modelling, doi:10.15488/14171, 2023.
Malles, J., Past to Future and Land to Sea: constraining global glacier models by observations and exploring ice-ocean interactions, doi:10.26092/elib/2323, 2023.
Recinos, B., Ocean-glacier interaction on the large regional scale, doi:10.26092/elib/434, 2020.
Vlug, A., The influence of climate variability on the mass balance of Canadian Arctic land-terminating glaciers, in simulations of the last millennium, doi:10.26092/elib/1501, 2021.
Pelto, B., An approach to remotely monitor glacier mass balance at seasonal to annual time scales, Columbia and Rocky Mountains, Canada, doi:10.24124/2020/59097, 2020.
Master
Chizzola, R. Influence of the future changes of the Atlantic Meridional Overturning Circulation on North Atlantic Glaciers, link, 2024.
Holmgren, E. 21st century glacier runoff and how it buffers drought in 75 large-scale basins, link, 2022.
Oberrauch, M. Testing the importance of explicit glacier dynamics for mountain glacier change projections, link, 2021.
Schmitt, P., Flowline glacier bed estimation with numerical modelling and cost minimization: Extending the open source model COMBINE 1D, link, 2021.
Castellani, M. Estimating Glacier Ice Thickness with Machine Learning, link, 2020.
Schuster, L., Response time sensitivity of glaciers using the Open Global Glacier Model, link, 2020.
Gregor, P., Inversion of Glacier Bed from Surface Observations by Cost Minimization: Introducing the Open Source Model COMBINE, link, 2019.
Thorlaksson, D., Calibrating a glacier ice thickness model from in-situ point measurements, link, 2017.
Bachelor / Undergrad
Cort, J., An assessment of Swiss glacier change by 2100 under varying climate projections using the Open Global Glacier Model (OGGM), 2024.
Arndt, M., On Thin Ice: The future of glacial runoff in La Paz, Bolivia, doi:10.5281/zenodo.7946884, 2023.
Schwienbacher, F., Model sensitivity of the mass-balance module of the OGGM model, 2017.